
PRINCIPLES OF ANALYSIS
CONDENSED LECTURE NOTES

PAUL L. BAILEY

1. Natural Numbers

We assume intuitive familiarity with the natural numbers N, the integers Z, the
rational numbers Q, the real numbers R, and the complex numbers C.

Assertion 1. (Peano Axioms)
The natural numbers are a set N satisfying the following properties.
(N1) 1 ∈ N
(N2) n ∈ N ⇒ n+ ∈ N
(N3) 1 6= n+ for any n ∈ N
(N4) m+ = n+ ⇒ m = n
(N5) If A ⊂ N such that 1 ∈ A and n ∈ A ⇒ n+ ∈ A, then A = N

We call these properties the Peano Axioms.

Proposition 1. (Principal of Mathematical Induction)
Let pn be a proposition, for each n ∈ N. Suppose

(I1) p1;
(I2) pn ⇒ pn+1.

Then pn is true for every n ∈ N.

Definition 1. Let a ∈ C. We say that a is algebraic if there exists a polynomial
f(x) with coefficients in Z such that f(a) = 0.

Proposition 2. (Rational Zeros Theorem)
Let f(x) = anxn + · · · + a1x + a0, with ai ∈ Z for all i and an 6= 0. Let m

n ∈ Q,
with m,n ∈ Z, n > 0, and gcd(m,n) = 1. If f(m

n ) = 0, then m divides a0 and n
divides m.

Problem 1. Show that 3n ≤ n3 for all n ∈ N.

Problem 2. Show that

sec
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8

)
=

√
4− 2

√
2

is an algebraic number.
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2. Ordered Fields

2.1. Fields.

Definition 2. A field is a set F together with binary operators

+ : F × F → F and · : F × F → F

satisfying:
(A1) a + (b + c) = (a + b) + c for all a, b, c ∈ F
(A2) a + b = b + a for all a, b ∈ F
(A3) ∃0 ∈ F such that a + 0 = a for all a ∈ F
(A4) ∀a ∈ F ∃ − a ∈ F such that a + (−a) = 0
(M1) a(bc) = (ab)c for all a, b, c ∈ F
(M2) ab = ba for all a, b ∈ F
(M3) ∃1 ∈ F such that a · 1 = a for all a ∈ F
(M4) ∀a ∈ F r {0} ∃a−1 ∈ F such that aa−1 = 1
(DL) a(b + c) = ab + bc for all a, b, c ∈ F

2.2. Ordered Fields.

Definition 3. An ordered field is a field F together with a relation

≤⊂ F × F

satisfying:
(O1) a ≤ b or b ≤ a for all a, b ∈ F
(O2) a ≤ b and b ≤ a implies a = b for all a, b ∈ F
(O3) a ≤ b and b ≤ c implies a ≤ c for all a, b, c ∈ F
(O4) a ≤ b implies a + b ≤ b + c for all a, b, c ∈ F
(O5) a ≤ b and 0 ≤ c implies ac ≤ bc for all a, b, c ∈ F

Remark 1. Let F be an ordered field and let x, y ∈ F . Then
• x < y means x ≤ y and x 6= y;
• x ≥ y means y ≤ x;
• x > y means y < x;
• x < y < z means x < y and y < z.

Remark 2. Let F be an ordered field; then F contains 0 and 1. Since F is ordered,
the set of elements obtained by adding 1 to itself is infinite, and since F is closed
under addition, F contains N. Since F is closed under additive inverses, F contains
Z. Since F is closed under multiplicative inverses, F contains Q.

2.3. Complete Ordered Fields.

Definition 4. Let F be an ordered field. Let S ⊂ F and let b ∈ F .
We say that b is an upper bound for S if s ≤ b for every s ∈ S.
We say that b is a lower bound for S if b ≤ s for every s ∈ S.
We say that b is the least upper bound (supremum) of S, and write b = sup S, if
(1) s ≤ b for every s ∈ S;
(2) if s ≤ c for every s ∈ S, then b ≤ c.
We say that b is the greatest lower bound (infimum) of S, and write b = inf S, if
(1) b ≤ s for every s ∈ S;
(2) if c ≤ s for every s ∈ S, then c ≤ b.
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Definition 5. (Completeness Axiom)
Let F be an ordered field. We say that F is complete if
(CA) every subset of F which is bounded above has a least upper bound.

Proposition 3. Let F be a complete ordered field. Then every subset of F which
is bounded below has a greatest lower bound.

Proposition 4. (Archimedean Property)
Let F be a complete ordered field. Let a, b ∈ F with 0 < a < b. Then there exists
n ∈ N such that na < b.

Proposition 5. (Density of Q)
Let F be a complete ordered field. Let a, b ∈ F with a < b. Then there exists q ∈ Q
such that a < q < b.

Assertion 2. The real numbers are a set R whose algebraic and order structure
produce a complete ordered field.

2.4. Problems.

Problem 3. Let A and B be bounded sets of real numbers with B ⊂ A.
(a) Show that sup B ≤ supA.
(b) Show that inf B ≥ inf A.

Problem 4. Let A and B be bounded sets of real numbers. Define

A + B = {x ∈ R | x = a + b for some a ∈ A, b ∈ B}.
(a) Show that sup(A + B) = supA + supB.
(b) Show that inf(A + B) = inf A + inf B.

Problem 5. Let A and B be bounded sets of real numbers. Define

A−B = {x ∈ R | x = a− b for some a ∈ A, b ∈ B}.
(a) Show that sup(A−B) = supA− inf B.
(b) Show that inf(A−B) = inf A− supB.

Problem 6. Let A and B be bounded sets of positive real numbers. Define

A ∗B = {x ∈ R | x = ab for some a ∈ A, b ∈ B}.
(a) Show that sup(A ∗B) = supA supB.
(b) Show that inf(A ∗B) = inf A inf B.

Solution Part (a). Let ab ∈ A ∗ B. Then a ≤ supA and b ≤ supB. Since a and b
are nonnegative, ab ≤ (supA)(supB), which shows that (supA)(supB) is an upper
bound for the set A ∗B. Thus sup A ∗B ≤ (supS)(supT ).

Suppose sup A ∗ B < (supA)(supB). Then supA ∗ B/ supB < supA. Select
a ∈ A such that sup A ∗B/ supB < a ≤ supA. Then supA ∗B/a < supB. Select
b ∈ B such that supA∗B/a < b ≤ supB. Then supA∗B < ab, a contradiction. �

Problem 7. Let A and B be bounded sets of positive real numbers. Define

A/B = {x ∈ R | x =
a

b
for some a ∈ A, b ∈ B}.

(a) Show that sup(A/B) = sup A
inf B .

(b) Show that inf(A/B) = inf A
sup B .

Problem 8. Let α ∈ R and let A = {r ∈ Q | r < α}. Show that supA = α.
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3. Sequences

3.1. Sequences.

Definition 6. Let A be a set. A sequence in A is a function a : N → A. We write
an to mean a(n), and we write (an)∞n=1, or simply (an), to denote the function a.

We are primarily interested in sequences of real numbers, i.e., sequences in R.

Definition 7. Let (an)∞n=1 be a sequence of real numbers and let p ∈ R. We say
that (an)∞n=1 converges to p

∀ε > 0 ∃N ∈ N 3 n ≥ N ⇒ |an − p| < ε.

In this case, we say that p is a limit point of (an)∞n=1.

Proposition 6. Let (an)∞n=1 be a sequence in R and let p1, p2 ∈ R.
If (an)∞n=1 converges to p1 and to p2, then p1 = p2.

Proof. Suppose not, and set d = |p1 − p2|; then d is positive. Let ε = d
4 . Then by

definition of limit, there exist positive integers N1 and N2 such that n ≥ N1 implies
that |an − p1| < ε, and n ≥ N2 implies that |an − p2| < ε.

Let N = max{N1, N2}. Then for n ≥ N ,

d = |p1 − p2|
= |p1 − an + an − p2|
= |p1 − an|+ |an − p2| by the Triangle Inequality

= |an − p1|+ |an − p2|
≤ ε + ε

=
d

2
.

This is a contradiction; thus p1 = p2. �

Thus limits are unique when they exist, justifying the article the limit instead of
“a limit point”. We write p = limn→∞ an, or simply p = lim an, or even an → p to
denote the fact that (an)∞n=1 converges to p. If a sequence has a limit, we say that
it is convergent; otherwise it is divergent.

Let (an)∞n=1 be a sequence of real numbers. The image of (an)∞n=1 is the image
of the sequence as a function, that is, it is the set

{an | n ∈ N}.
Note that there is much more information in a sequence than in its image; for
example, the sequences (1+(−1)n)∞n=1 and (0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, . . . ) have
the same image; the common image is {0, 2}, a set containing two elements.
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3.2. Arithmetic of Sequences.

Proposition 7. Let (an)∞n=1 be a convergent sequence in R, and let k ∈ R. Then
the sequence (kan)∞n=1 converges, and

lim
n→∞

kan = k lim
n→∞

an.

Proof. Let ε > 0, and let p = limn→∞ an. Since an → p, there exists N ∈ N such
that

|an − p| < ε

k
.

Then
|kan − kp| < ε.

�

Proposition 8. Let (an)∞n=1 and (bn)∞n=1 be convergent sequences of real numbers.
Then the sequence (an + bn)∞n=1 converges, and

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn.

Proposition 9. Let (an)∞n=1 and (bn)∞n=1 be convergent sequences of real numbers.
Then the sequence (anbn)∞n=1 converges, and

lim
n→∞

(anbn) = ( lim
n→∞

an)( lim
n→∞

bn).

Proposition 10. Let (an)∞n=1 be a convergent sequence of nonzero real numbers
whose limit is not zero. Then the sequence ( 1

an
)∞n=1 converges, and

1
limn→∞ an

= lim
n→∞

( 1
an

)
.

3.3. Bounded Sequences.

Definition 8. Let (an)∞n=1 be a sequence in R. We say that (an) is bounded above
if there exists a ∈ R such that a ≥ sn for every n ∈ N. We say that (an) is bounded
below if there exists b ∈ R such that b ≤ an for every n ∈ N. We say that (an)∞n=1

is bounded if it is bounded above and bounded below.

Equivalently, (an)∞n=1 is bounded if there exists b > 0 such that an ∈ [−b, b] for
every n ∈ N.

Proposition 11. Every convergent sequence in R is bounded.

Proof. Let (an)∞n=1 be a convergent sequence with limit p. Let N be so large that
for n ≥ N we have |an − p| < 1. And |p| to both sides of this inequality and apply
the triangle inequality to get, for every n ≥ N ,

|an| ≤ |an − p|+ |p| < 1 + |p|.
There are only finitely many terms of the sequence between a1 and aN−1; set

M = max{|a1|, |a2|, . . . , |aN−1|, 1 + |p|}.
Then M ≥ an for every n ∈ N, so (an)∞n=1 is bounded. �
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Proposition 12. Let (sn)∞n=1 be a sequence in R which converges to p, and let
a, b ∈ R with a < b.

(a) If sn ≥ a for every n ∈ N, then p ≥ a.
(b) If sn ≤ b for every n ∈ N, then p ≤ b.
(c) If sn ∈ [a, b] for every n ∈ N, then p ∈ [a, b].

Proof. In this proof, we use the fact that if x ≤ y + ε for every ε > 0, then x ≤ y.
To see this, suppose that x > y, and let ε = x−y

2 ; then y + ε = x− ε, so x > y + ε.
Suppose that sn ≥ a for every n ∈ N. To show that a ≤ p, it suffices to show

that a ≤ p+ ε for every ε > 0. Thus let ε > 0; since (sn) converges to p, there exists
N ∈ N such that n ≥ N ⇒ |sn− p| < ε. Thus −ε < sn− p < ε, so sn < p+ ε. Since
a ≤ sn, transitivity of order implies that a < p + ε. Since this is true for every
ε > 0, we have a ≤ p.

That p ≤ b can be proved similarly.
Finally, if sn ∈ [a, b], we have a ≤ sn ≤ b for every n ∈ N. Combining parts (a)

and (b) tells us that a ≤ p ≤ b, which is equivalent to p ∈ [a, b]. �

Proposition 13. Let (an)∞n=1 and (bn)∞n=1 be sequences in R such that an ≤ bn

for every n ∈ N. If they both converge, then lim an ≤ lim bn.

Proof. Let a = lim an and b = lim bn; suppose by way of contradiction that b < a.
Set ε = b−a

2 ; then there exists N1 ∈ N such that n ≥ N1 implies |an−a| < ε/2, and
there exists N2 ∈ N such that n ≥ N2 implies |bn−b| < ε/2. Let N = max{N1, N2};
then by an application of the triangle inequality, bn < an, a contradiction. �

Proposition 14. (Squeeze Law)
Let (an), (bn), and (sn) be sequences in R such that an ≤ sn ≤ bn for all n ∈ N.
If lim an = lim bn = p, then (sn) converges to p.

Proof. Let ε > 0. Note that for any n ∈ N, since an ≤ sn ≤ bn we have

|sn − an| = sn − an ≤ bn − an = |bn − an|.
Since lim an = p, there exists N1 ∈ N such that |an − p| < ε

3 for n ≥ N1.
Since lim bn = s, there exists N2 ∈ N such that |bn − p| < ε

3 for n ≥ N2.
Let N = max{N1, N2}. Now for n ≥ N , we have

|bn − an| = |bn − p + p− an| ≤ |bn − p|+ |an − p| < ε

3
+

ε

3
=

2ε

3
.

Then for n ≥ N , we have

|sn−p| = |sn−an +an−p| ≤ |sn−an|+ |an−p| ≤ |bn−an|+ |an−p| < 2ε

3
+

ε

3
= ε.

This shows that lim sn = p. �

3.4. Monotone Sequences.

Definition 9. Let (sn)∞n=1 be a sequence of real numbers.
We say that (sn) is increasing if

m ≤ n ⇒ sm ≤ sn.

We say that (sn) is decreasing if

m ≤ n ⇒ am ≥ an.

We say that (sn) is monotone if it is either increasing or decreasing.
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Note that to check if the sequence (sn) is increasing, if suffices to check that
sn+1 ≥ sn for every n ∈ N. In this case, the definition above will follow by
induction. The analogous comment holds for the condition of decreasing.

Theorem 1. (Monotone Convergence Principle)
Every bounded monotone sequence of real numbers converges.

Proof. Suppose that (sn)∞n=1 is bounded. Also assume that it is increasing; the
proof for decreasing will be analogous. Let S = {sn | n ∈ N} be the image of the
sequence, and set u = supS. Since S is bounded, u ∈ R. Clearly sn ≤ u for every
n ∈ N. We show that lim sn = u.

Let ε > 0. Since u− ε is not an upper bound for S, there exists s ∈ S such that
u − ε < s ≤ u. Now s = sN for some N ∈ N, and since (sn)∞n=1 is increasing, we
have u− ε < sn < u for every n ≥ N . Thus |sn− u| < ε for n ≥ N ; this shows that
(sn) converges to u. �

3.5. Limits Superior and Inferior.

Proposition 15. Let (sn)∞n=1 be a bounded sequence of real numbers. Set

uN = sup{sn | n ≥ N} and vN = inf{sn | n ≥ N}.
Then (un)∞n=1 is a bounded decreasing sequence and (vn)∞n=1 is a bounded increasing
sequence. Each of these sequences converges.

Proof. Since (sn) is a bounded sequence, the sets {sn | n ≥ N} are bounded sets,
so uN and vN exist as real numbers for all N ∈ N, and in fact if S = {sn | n ∈ N},
then inf S ≤ vN ≤ uN ≤ supS for every N ∈ N. Thus the sequences (uN ) and
(vN ) are bounded sequences.

To show that these sequences are monotone, we use the general fact that if
A,B ⊂ R and B ⊂ A, then supB ≤ supA and inf B ≥ inf A.

In our case, select N ∈ N and let A = {sn | n ≥ N} and B = {sn | n ≥ N + 1}.
Then B ⊂ A, so supB ≤ supA, which is to say, uN+1 ≤ uN . Thus (uN ) is a
decreasing sequence. Similarly, (vN ) is an increasing sequence.

Thus (uN ) and (vN ) are bounded monotone sequences, and so are convergent by
the Monotone Convergence Principal. �

Definition 10. Let (sn)∞n=1 be a bounded sequence of real numbers. Define the
limit superior of (sn) to be

lim sup sn = lim
N→∞

sup{sn | n ≥ N}

and the limit inferior of (sn) to be

lim inf sn = lim
N→∞

inf{sn | n ≥ N}.

Proposition 16. Let (sn)∞n=1 be a bounded sequence of real numbers.
Then lim inf sn ≤ lim sup sn.

Proof. For every N ∈ N, we have inf{sn | n ≥ N} ≤ sup{sn | n ≥ N}. The result
follows from Proposition 13. �
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Proposition 17. Let (sn)∞n=1 be a sequence of real numbers.
(a) If (sn) converges to s, then lim inf sn = s = lim sup sn.
(b) If lim inf sn = lim sup sn, then (sn) converges.

Proof. We again use the fact that if x ≤ y + ε for every ε > 0, then x ≤ y.
Suppose that (sn)∞n=1 converges to a real number s. Let ε > 0. We wish to show

that lim sup sn ≤ s + ε for every ε > 0, whence lim sup sn ≤ s.
Since sn → s, there exists N ∈ N such that |sn−s| < ε for n ≥ N . It follows that

sup{sn | n ≥ N} < s+ ε. Since (sup{sn | n ≥ N})∞N=1 is a decreasing sequence, we
have lim sup sn < s + ε. Therefore lim sup sn ≤ s.

Similarly, s ≤ lim inf sn, so

s ≤ lim inf sn ≤ lim sup sn ≤ s,

so
lim inf sn = s = lim sup sn.

Now suppose that lim inf sn = lim sup sn, and label this common value s. We
want to show that lim sn = s.

Let ε > 0. Since s = lim sup sn, there exists N1 ∈ N such that

| sup{sn | n ≥ N1} − s| < ε.

In particular, sup{sn | n ≥ N1} < s + ε, so sn < s + ε for n ≥ N1. Similarly,
since s = lim inf sn, there exists N2 ∈ N such that sn > s − ε for n ≥ N2. Let
N = max{N1, N2}. Then for n ≥ N , we have s−ε < sn < s+ε, that is, |sn−s| < ε.
Thus sn → s. �

3.6. Cauchy Sequences.

Definition 11. Let (sn)∞n=1 be a sequence of real numbers. We say that (sn)∞n=1

is a Cauchy sequence if

∀ε > 0 ∃N ∈ N 3 m,n ≥ N ⇒ |sm − sn| < ε.

Proposition 18. Let (sn)∞n=1 be a Cauchy sequence. Then (sn)∞n=1 is bounded.

Proof. Since (sn)∞n=1 is Cauchy, there exists N ∈ N such that if m,n ≥ N , then
|sm − sn| < 1. In particular, for every n ≥ N , we have |sn − sN | < 1. Set

M = max{s1, s2, . . . , sN−1, sN + 1}.
Then sn ∈ [−M,M ] for every n ∈ N. �
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Theorem 2. (Cauchy Convergence Criterion)
A sequence of real numbers converges if and only if it is a Cauchy sequence.

Proof. We prove each direction of the double implication.
(⇒) Assume that the sequence (sn) is convergent. Let ε > 0, and set s = lim sn.

Then there exists N ∈ N such that if n ≥ N , then |sn − s| < ε/2. Then for
m,n ≥ N , we have

|sm − sn| = |sm − s + s− sn|
= |sm − s|+ |sn − s|

≤ ε

2
+

ε

2
= ε.

(⇐) Assume that the sequence (sn) is a Cauchy sequence. Then it is bounded,
and so its limit superior and inferior exist as real numbers. By a previous proposi-
tion, it suffices to show that lim inf sn = lim sup sn.

Let ε > 0. Then there exists N ∈ N such that if m,n ≥ N , then |sm − sn| < ε.
In particular, |sn − sN | < ε

2 for all n ≥ N , so sN + ε
2 is an upper bound for

{sn | n ≥ N}. Thus sup{sn | n ≥ N} ≤ sN + ε
2 , and therefore lim sup sn ≤ sN + ε

2 .
Similarly lim inf sn ≥ sN − ε

2 . Rearranging these inequalities gives

lim sup sn −
ε

2
≤ sN ≤ lim inf sn +

ε

2
,

or
0 ≤ lim sup sn − lim inf sm < ε.

Since ε is arbitrary, we have lim sup sn = lim inf sn. �

3.7. Problems.

Problem 9. Let

an =
5n2 + 1
2n2 − 3

.

Let ε > 0. Find N ∈ N such that

n ≥ N ⇒ |an −
5
2
| < ε.

Problem 10. Let b, c ∈ R with b ≥ 1 and c ≥ 0. Set d = b+
√

b2+4c
2 . Let xn = 1

and xn+1 =
√

bx + c.
(a) Use induction to show that 1 ≤ xn ≤ d.
(b) Use induction to show that xn ≤ xn+1.
(c) Show that (xn) converges to d.

Problem 11. Let (an)∞n=1 be a convergent sequence of real numbers, and let A =
{an | n ∈ N}. Show that limn→∞ an ≤ supA.

Problem 12. Let (an)∞n=1 be a sequence in [a, b], where a, b ∈ R and a < b. Show
that if (an) converges to p, then p ∈ [a, b].

Problem 13. Let (sn)∞n=1 be a sequence of nonzero real numbers such that
limn→∞ |sn| converges to a positive real number. Show that there exists m > 0
such that |sn| > m for all n. (This is a Lemma for Proposition 10).
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Problem 14. Let (sn) be a sequence in R.
Show that lim |sn| = 0 if and only if lim sn = 0.

Problem 15. Let (sn) and (tn) be sequences in R such that |sn| ≤ tn for all n and
lim tn = 0. Show that lim sn = 0.

Solution. Since |sn| ≤ tn, we have −tn ≤ sn ≤ tn.
Let ε > 0 and let N be so large that |tn − 0| < ε for n > N . Since

|tn − 0| = |tn| = | − tn| = | − tn − 0|,
then | − tn − 0| < ε for n > N . Thus lim−tn = 0.

The result follows by the Squeeze Law. �

Problem 16. Let A be a bounded set of real numbers.
(a) Show that there exists a sequence in A which converges to supA.
(b) Show that there exists a sequence in A which converges to inf A.

Problem 17. Let (an) and (bn) be sequences in R such that (an) is bounded and
lim bn = 0. Show that lim anbn = 0.

Solution. Let M > 0 such that |an| ≤ M for all n ∈ N. Let ε > 0. Since lim bn = 0,
there exists N ∈ N such that for all n > N , |bn − 0| < ε

M . Then for n > N , we
have

|anbn − 0| = |an||bn| ≤ M
ε

M
= ε.

Thus lim anbn = 0. �

Problem 18. Construct sequences (an) and (bn) of positive real numbers, with
cn = anbn, satisfying

(0) limn→∞ bn = 0;
(1) lim inf cn = 1;
(2) lim sup cn = 2.

Problem 19. Let (an) be a sequence of positive real numbers satisfying a2
n+1 = an.

Show that (an) converges to 1.

Definition 12. Let A ⊂ R be an open interval. A function f : A → R is called
a contraction if there exists M ∈ R such that |f(a) − f(b)| ≤ M |a − b| for any
a, b ∈ U .

Problem 20. Let f : R → R be a contraction. Let (an) be a sequence of real
numbers which converges to p ∈ R. Show that lim f(an) = f(L).

Solution. Let ε > 0. Since f is a contraction, there exists M ∈ R such that
|f(a)− f(b)| < M |a− b| for all a, b ∈ R.

Since (an) converges to p, there exists N ∈ N such that |an − p| < ε
M for all

n > N . Since f is a contraction,

|f(an)− f(p)| < M |an − p| < M
ε

M
= ε

for all n > N . Thus f(an) → f(p). �
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Problem 21. Let (sn) and (tn) be sequences in R.
Show that lim sup(sn + tn) ≤ lim sup sn + lim sup tn.

Solution. Let Sm = {sn | n > m}, Tm = {tn | n > m}, and Um = {sn+tn | n > m}.
We have sup(Sm + Tm) = supSm + sup Tm by Problem 4. But Um ⊂ Sm + Tm, so
supUm ≤ supSm + supTm by Problem 3. Thus

lim sup(sn + tn) = lim(supUm)

≤ lim(supSm + supTm)

= lim(supSm) + lim(supTm)
= lim sup sn + lim sup tn.

�

Problem 22. Let (sn) and (tn) be bounded sequences over nonnegative real num-
bers.
Show that lim sup sntn ≤ (lim sup sn)(lim sup tn).

Solution. Let Sm = {sn | n > m}, Tm = {tn | n > m}, and Um = {sntn | n > m}.
We have sup(SmTm) = (supSm)(supTm) by Problem 6. But Um ⊂ SmTm, so
supUm ≤ supSm supTm by Problem 3. Thus

lim sup(sntn) = lim(supUm)

≤ lim(supSm supTm)

= lim(supSm) lim(supTm)

= lim sup(sn) lim sup(tn).

�

Problem 23. Let (sn)∞n=1 be a bounded sequence of real numbers. Let v =
lim inf sn and u = lim sup sn. Show that for every ε > 0 there exists N ∈ N
such that if n ≥ N , then sn ∈ (v − ε, u + ε).

Problem 24. Let (sn) be a sequence of real numbers which converges to s ∈ R.
Let σn = 1

n

∑n
i=1 si. Show that (σn) converges to s.

Solution. Let τn = σn − s. It suffices to show that (τn) converges to zero. Note
that

τn =
1
n

n∑
i=1

si −
ns

n
=

1
n

n∑
i=1

(si − s).

Let N0 ∈ N be so large that |sn − s| < ε
2 for all n > N0. Let M =

∑N
i=1 |si − s|.

Then for n > N0, we have

|τn| ≤
M

n
+

1
n

n∑
i=N0+1

|sn − s| by ∆-inequality

<
M

n
+

1
n

(n−N0)
ε

2
summing n−N0 small numbers

<
M

n
+

ε

2
since

n−N0

n
≤ 1.

Now select N ∈ N with N > N0 which is so large that M
n < ε

2 . Then for n > N , we
have |τn| < ε

2 + ε
2 = ε. This shows that |τn| → 0 as n →∞. Thus lim τn = 0. �
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Problem 25. Let (an) and (bn) be a sequences of real numbers we converge to a
and b respectively. Let

µn =
a1bn + a2bn−1 + · · ·+ an−1b2 + anb1

n
.

Show that (µn) converges to ab.

Solution. Let νn = µn − ab. It suffices to show that (νn) converges to zero.
Since (ai) is a convergent sequence, is bounded; select M > 0 such that |ai| ≤ M .

Also note that for any sequence (si), we have
∑n

i=1 sn−i+1 =
∑n

i=1 si; this follows
from inductive use of commutativity.

Now

|νn| =
1
n
|

n∑
i=1

aibn−i+1 −
nab

n
|

=
1
n
|

n∑
i=1

(aibn−i+1 − ab)|

≤ 1
n

n∑
i=1

|aibn−i+1 − ab|

=
1
n

n∑
i=1

|aibn−i+1 − aib + aib− ab|

≤
∑n

i=1 |aibn−i+1 − aib|
n

+
∑n

i=1 |aib− ab|
n

≤ M

∑n
i=1 |bn−i+1 − b|

n
+ b

∑n
i=1 |ai − a|

n

= M

∑n
i=1 |bi − b|

n
+ b

∑n
i=1 |ai − a|

n
.

Let τn = M
Pn

i=1 |bi−b|
n + b

Pn
i=1 |ai−a|

n . By the Problem 24,

lim
n→∞

τn = M lim
∑n

i=1 |bi − b|
n

+ b lim
∑n

i=1 |ai − a|
n

= M · 0 + b · 0 = 0.

Since 0 ≤ |νn| ≤ τn and lim τn = 0, we have |νn| → 0 so lim νn = 0. �
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4. Cluster Points and Subsequences

4.1. Cluster Points.

Definition 13. Let (an)∞n=1 be a sequence of real numbers and let q ∈ R.
We say that (an)∞n=1 clusters at q if

∀ε > 0 ∀N ∈ N ∃n ≥ N 3 |sn − C| < ε.

In this case, we call q a cluster point of (an)∞n=1.

Proposition 19. Let (an) be a sequence in R which converges to p ∈ R. Then p
is a cluster point of (an).

Proof. Let ε > 0 and N ∈ N; we wish to show that there exists n ≥ N such that
|an − p| < ε. Since (an) converges to p, there exists N0 ∈ N such that n ≥ N0

implies |an − p| < ε. Let n = max{N,N0}; then n ≥ N and |an − p| < ε. �

Proposition 20. Let (an) be a bounded sequence of real numbers. Then
(a) lim sup an is a cluster point of (an);
(b) lim inf an is a cluster point of (an).

Proof. Since (an) is bounded, lim sup an and lim inf an exist as real numbers. Let
u = lim sup an; we wish to show that u is a cluster point of (an).

Let ε > 0 and let N ∈ N; it suffices to show that there exists m ≥ N such that
|am − u| < ε. Let uM = sup{an | n ≥ M}.

Since u = limM→∞ uM , there exists N0 ∈ N such that, for all M ≥ N0, we
have |uM − u| < ε. Let M = max{N,N0}. Then U − ε < uM < u + ε; since
uM = sup{an | n ≥ M}, there exists an element of {an | n ≥ M} between U − ε
and uM . Select m ∈ N with m ≥ M ≥ N such that u − ε < am < uM . We have
u− ε < am < u + ε, so |am − u| < ε. Thus u is a cluster point of (an).

That lim inf an is a cluster point can be proved similarly. �

Proposition 21. (Bolzano-Weierstrass Theorem Version I)
Every bounded sequence of real numbers has a cluster point.

Proof. The limit superior of a bounded sequence exists as a real number, and this
real number is a cluster point by Proposition 20. �

Proposition 22. Let (an) be a bounded sequence in R, and let q be a cluster point
of (an). Then lim inf an ≤ q ≤ lim sup an.

Proof. Suppose that q ∈ R, and assume that q > u = lim sup an. Now q − u is
positive; let ε = q−u

2 . By definition of limit superior, there exists N ∈ N such
that n ≥ N implies | sup{an | n ≥ N} − u| < ε. Thus for every n ≥ N , we have
sup{an | n ≥ N} < u + ε, so an < u + ε = q − ε, and q − an > ε.

This shows that q is not a cluster point; thus any cluster point must be less than
or equal to lim sup an. Similarly, any cluster point must be greater than or equal
to lim inf an. �
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Proposition 23. Let (an) be a sequence in R. Then (an) converges to p if and
only if p is the only cluster point of (an).

Proof. We prove the double implication in each direction, using the fact that (an)
converges (to p) if and only if lim inf an = lim sup an (which equals p), as we have
previously shown.

(⇒) Suppose that (an) converges to p. By Proposition 19, p is a cluster point of
(an), and we wish to show it is the only cluster point. Let q be a cluster point; we
wish to show that q = p.

By Proposition 22, we have lim inf an ≤ q ≤ lim sup an. Because (an) converges
to p, we know that lim inf an = lim sup an = p. Thus q = p.

(⇐) Suppose that p is the only cluster point of (an). Then lim inf an = p =
lim sup an. This shows that (an) converges to p. �

4.2. Subsequences. Let a : N → R be a sequence of real numbers. A subsequence
of a is the composition a ◦ n of a with a strictly increasing sequence n : N → N of
positive integers.

If we denote the sequence a by (an)∞n=1 and the sequence n by (nk)∞k=1, then we
denote the subsequence by (ank

)∞k=1.

Proposition 24. Let n : N → N such that n 7→ nk be an increasing sequence.
Then nk ≥ k.

Proof. By induction on k.
For k = 1, we have nk = n1 ≥ 1, since nk ∈ N.
Assume that nk ≥ k; then nk + 1 ≥ k + 1. Since n is increasing, nk+1 > nk, so

nk+1 ≥ nk + 1. Thus nk+1 ≥ nk + 1 ≥ k + 1. �

Proposition 25. Let (an) be a sequence of real numbers and let p ∈ R. Then (an)
converges to p if and only if every subsequence of (an) converges to p.

Proof. We prove both directions.
(⇐) Note that a sequence is a subsequence of itself. Thus if every subsequence

of (an) converges to p, then in particular the sequence itself converges to p.
(⇒) Suppose that lim an = p. Let (ank

) be a subsequence of (an), and let ε > 0.
Then there exists N ∈ N such that if n ≥ N , then |an − p| < ε. Thus for k ≥ N ,
we have nk ≥ K ≥ N , so |ank

− p| < ε. �
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Proposition 26. Let (an) be a sequence of real numbers. Then (an) has a
monotonic subsequence.

Proof. This proof follows Ross, which in turn follows D. J. Newman’s A Problem
Seminar.

Let’s say that the ith term of (an) is dominant if aj < ai for every j > i.
Case 1: There are infinitely many dominant terms. In this case, set

n1 = min{n ∈ N | an is dominant}.

Then recursively set

nk+1 = min{n ∈ N | an is dominant and n > nk};

this set is nonempty by the hypothesis of this case. Then (ank
) is a decreasing

sequence.
Case 2: There are finitely many dominant terms. In this case, set

n0 = max{n ∈ N | an is dominant}.

Then recursively set

nk+1 = min{n ∈ N | an > ank
and n > nk};

this set is nonempty because an0 was the last dominant term. Now (ank
) is an

increasing sequence. �

Proposition 27. (Bolzano-Weierstrass Theorem Version II)
Every bounded sequence of real numbers has a convergent subsequence.

Proof. It is clear that if a sequence is bounded, then every subsequence is also
bounded. Thus a bounded sequence has a bounded monotonic subsequence, which
must converge. �

4.3. Subsequential Limits.

Definition 14. We say that q is a subsequential limit of (an) if there exists a
subsequence {ank

}∞k=1 such that limk→∞ ank
= q.

Proposition 28. Let (an) be a sequence of real numbers, and let q ∈ R. Then q is
a cluster point of (an)if and only if q is a subsequential limit of (an).

Proof. Suppose that q is a cluster point. Then for every N ∈ N there exists n ≥ N
such that |an − q| < 1

N .
Set

n1 = min{n ∈ N | |an − q| < 1},
and inductively set

nk+1 = min{n ∈ N | |an − q| < 1
n

and n > nk}.

That these sets are nonempty is assured by the fact that (an) clusters at q. Then
(ank

) is a subsequence of (an) which converges to q.
Suppose that (ank

) is a subsequence which converges to q. Let ε > 0 and let
N ∈ N. Let K be so large that k ≥ K ⇒ |ank

− q| < ε. Let n = max{N,K}. Then
n ≥ N , so nk ≥ N . Moreover, n ≥ K, so nk ≥ K and |ank

− q| < ε. �
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Remark 3. We have previously seen that every bounded sequence has a cluster
point, and we have just seen that every cluster point is the limit of a subsequence.
This produces an alternate proof of the Bolzano-Weierstrass Theorem Version II.

Proposition 29. Let (an) be a bounded sequence in R.
Then there exist monotonic subsequences of (an) which converge to lim sup an and
lim inf an.

Proof. We have seen that lim sup an and lim inf an are cluster points, and that
cluster points are subsequential limits. Since every sequence has a monotonic sub-
sequence, the result follows. �

4.4. Problems.

Problem 26. Construct a divergent sequence (an) of real numbers such that (amk)
converges for every m ∈ N, m ≥ 2.

Solution. We use the fact that there are infinitely prime numbers.
Define

an =

{
1 if n is prime ;
0 otherwise .

Since there are infinitely many primes, lim sup an = 1. Since there are infinitely
many nonprimes, lim inf an = 0. Thus (an) does not converge.

However, for any m ∈ N with m ≥ 2, mk is not prime for k ≥ 2, so amk = 0 for
all k ≥ 2. Thus limk→∞ amk = 0, and (amk) converges. �

Problem 27. Let (an) and (bn) be bounded sequences of positive real numbers,
and suppose that 0 ∈ R is a cluster point of the sequence (anbn). Show that 0 is a
cluster point of either (an) or of (bn).

Problem 28. Let (an) and (bn) be bounded sequences of positive real numbers,
and suppose that c ∈ R is a cluster point of the sequence (an + bn). Show that
there exist cluster points a of (an) and b of (bn) such that c = a + b.

Problem 29. Let (an) and (bn) be bounded sequences of positive real numbers,
and suppose that c ∈ R is a cluster point of the sequence (anbn). Show that there
exist cluster points a of (an) and b of (bn) such that c = ab.

Problem 30. Construct sequences (an) and (bn) such that a is a cluster point of
(an) and b is a cluster point of (bn), but a + b is not a cluster point of (an + bn).

Problem 31. Construct sequences (an) and (bn) such that a is a cluster point of
(an) and b is a cluster point of (bn), but ab is not a cluster point of (anbn).

Problem 32. Let (an) and (bn) be bounded sequences of positive real numbers,
and suppose that (anbn) has a subsequence which converges to 0. Show that either
(an) or (bn) has a subsequence that converges to 0.

Problem 33. Let (an) and (bn) be bounded sequences of positive real numbers,
and suppose that (an + bn) has a subsequence which converges to c ∈ R. Show that
there exists a subsequence of (an) which converges to a ∈ R and a subsequence of
(bn) which converges to b ∈ R such that c = a + b.
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Problem 34. Let (an) and (bn) be bounded sequences of positive real numbers,
and suppose that (anbn) has a subsequence which converges to c ∈ R. Show that
there exists a subsequence of (an) which converges to a ∈ R and a subsequence of
(bn) which converges to b ∈ R such that c = ab.

5. Open and Closed Sets

5.1. Open Sets.

Definition 15. A subset U ⊂ R is called open if

∀u ∈ U ∃ε > 0 3 |x− u| < ε ⇒ x ∈ U.

This definition can be restated in terms of neighborhoods.

Definition 16. Let x ∈ R. An ε-neighborhood of x is an open interval of the form
(x− ε, x + ε), where ε > 0.

More generally, a neighborhood of x is a subset Q ⊂ R such that there exists
ε > 0 with (x− ε, x + ε) ⊂ Q.

So, a set U ⊂ R is open if every point in U is surrounded by an ε-neighborhood
which is completely contained in U .

If C is a collection of subsets of a given set X, then the union and intersubsection
of C are

∪C = {x ∈ X | x ∈ C for some C ∈ C};
∩C = {x ∈ X | x ∈ C for all C ∈ C}.

Proposition 30. Let T denote the collection of all open subsets of R. Then
(a) ∅ ∈ T and R ∈ T;
(b) if O ⊂ T, then ∪O ∈ T;
(c) if O ⊂ T is finite, then ∩O ∈ T.

Proof.
(a) The condition for openness is vacuously satisfied by the empty set. For R,

consider x ∈ R. Then (x− 1, x + 1) ⊂ R. Thus R is open.
(b) Let O ⊂ T; that is, O is a collection of open sets. Select x ∈ ∪O. Then x ∈ U

for some U ∈ O. Since U is open, there exists ε > 0 such that (x − ε, x + ε) ⊂ U .
Since U ⊂ ∪O, it follows that (x− ε, x + ε) ⊂ ∪O. Thus ∪O is open.

(c) Let O ⊂ T be a finite collection of open sets. Since O is finite, we may write
O = {U1, U2, . . . , Un}, where Ui is an open set for i = 1, . . . , n. If ∩O is empty, we
are done, so assume that it nonempty, and select x ∈ ∩O. For each i, there exists
εi such that (x− εi, x+ εi) ⊂ Ui. Set ε = min{ε1, . . . , εn}. Then (x− ε, x+ ε) ⊂ ∩O.
Thus ∩O is open. �
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Proposition 31. Let O be a collection of open intervals. If ∩O is nonempty, then
∪O is an open interval.

Proof. By hypothesis, there exists x ∈ ∩O. Write O as a family of sets:

O = {Oα | α ∈ A},
where A is an indexing set. Now Oα is an open interval; we label its endpoints by
letting Oα = (aα, bα), where aα, bα ∈ R ∪ {±∞}. Set

a = inf{aα | α ∈ A} and b = sup{bα | α ∈ A}.
Claim: ∪O = (a, b). We prove both directions of containment.
(⊂) Let y ∈ ∪O. Then y ∈ Oα for some α. Thus a ≤ aα < y < bα ≤ b, so

y ∈ (a, b).
(⊃) Let y ∈ (a, b). Assume that y ≤ x; the proof for y ≥ x is analogous. Now

a < y, and since a = inf{aα | α ∈ A}, so there exists α ∈ A such that a ≤ aα < y.
Also x ∈ Oα so aα < y ≤ x < bα; thus y ∈ (aα, bα) = Oα, and y ∈ ∪O. �

Proposition 32. Let U ⊂ R. Then U is open if and only if there exists a collection
O of disjoint open intervals such that U = ∪O.

Proof. Let a ∈ U , and set Oa = {O ⊂ U | O is an open interval and a ∈ O}. Set
Oa = ∪Oa. By the previous proposition, Oa is an open interval.

Now suppose that a, b ∈ U and suppose that Oa ∩ Ob 6= ∅. Then there exists
c ∈ Oa∩Ob, so O = Oa∪Ob is an open interval by the Proposition 31. Also a ∈ O,
so O ∈ Oa, so O ⊂ Oa. Similarly, O ⊂ Ob. This shows that Oa = Ob.

Let O = {Oa | a ∈ U}. This is a collection of disjoint open intervals contained
in U , and every element of U is in one of these open intervals, so U = ∪O. �

5.2. Closed Sets.

Definition 17. A subset F ⊂ R is closed if its complement R r F is open.

We may characterize the collection F of closed subsets of R in a manner anal-
ogous to our characterization of T, the collect of open subsets of R, by the use of
DeMorgan’s Laws.

Proposition 33. (DeMorgan’s Laws)
Let X be a set and let {Aα | α ∈ I} be a family of subsets of X. Then⋂

α∈I

(X r Aα) = X r
( ⋃

α∈I

Aα

)
;

⋃
α∈I

(X r Aα) = X r
( ⋂

α∈I

Aα

)
.

Proposition 34. Let F denote the collection of all closed subsets of R.
(a) ∅ ∈ F and R ∈ F;
(b) if C ⊂ F, then ∩C ∈ F;
(c) if C ⊂ F is finite, then ∪C ∈ T.

Proof. Apply DeMorgan’s Laws to Proposition 30. �
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Proposition 35. Let F ⊂ R. Then F is closed if and only if every sequence in F
which converges in R has a limit in F .

Proof. We prove both directions.
(⇒) Suppose that F is closed, and let (an) be a sequence in F which converges

to a ∈ R. We wish to show that p ∈ F . Suppose not; then p ∈ R r F . This set
is open, so there exists ε > 0 such that (p − ε, p + ε) ⊂ R r F . Thus there exists
N ∈ N such that an ∈ R r F for all n ≥ N . This contradicts that the sequence is
in F .

(⇐) Suppose that F is not closed; we wish to construct a sequence in F which
converges to a point not in F . Since F is not closed, then R r F is not open. This
means that there exists a point x ∈ R r F such that for every ε > 0, (x− ε, x + ε)
is not a subset of R r F ; that is, (x− ε, x + ε) contains a point in F . For n ∈ N, let
xn ∈ (x− 1

n , x+ 1
n )∩F . Then (xn) is a sequence in F , but limn→∞ xn = x /∈ F . �

5.3. Problems.

Problem 35. Let (an) be a bounded sequence in R and let

Λ = {q ∈ R | q is a cluster point of (an)}.
Show that Λ is closed and bounded.

6. Continuity

6.1. Continuity.

Definition 18. Let D ⊂ R. Let f : D → R and a ∈ D. We say that f is continuous
at a if

∀ε > 0 ∃δ > 0 3 |x− a| < δ ⇒ |f(x)− f(a)| < ε.

Let A ⊂ D. We say that f is continuous on A if f is continuous at a for every
a ∈ A, We say that f is continuous if f is continuous on its entire domain.

Observation 1. It is immediate that the condition for continuity can be rewritten
as

∀ε > 0 ∃δ > 0 3 f((a− δ, a + δ) ∩D) ⊂ (f(a)− ε, f(a) + ε),
where f(U) = {y ∈ R | f(x) = y for some x ∈ D}.
Proposition 36. Let D ⊂ R. Let f : D → R and a ∈ D. Then f is continuous at
a if and only if for every sequence (xn)∞n=1 in D which converges to a, the sequence
(f(xn))∞n=1 converges to f(a).

Proof. We prove both directions.
(⇒) Suppose that f is continuous at a, and let (xn) be a sequence in D which

converges to a. Let ε > 0; we wish to find N ∈ N such that n ≥ N implies
|f(xn)− f(a)| < ε.

Since f is continuous at a, there exists δ > 0 such that for x ∈ D, |x − a| < δ
implies |f(x)− f(a)| < ε. Let N ∈ N be so large that n ≥ N ⇒ |xn − a| < δ. Then
for n ≥ N , we have |f(xn)− f(a)| < ε.

(⇐) Suppose that f is not continuous at a. We wish to find a sequence (xn)
from D such that (xn) converges to a, but (f(xn)) does not converge to f(a).

Since f is not continuous at a, there exists ε > 0 such that for every δ > 0
there exists x ∈ (a − δ, a + δ) with |f(x) − f(a)| ≥ ε. Thus for each n ∈ N, select
xn ∈ (a − 1

n , a + 1
n ) such that |f(xn) − f(a)| ≥ ε. Then (xn) converges to a, but

(f(xn)) does not converge to f(a). �
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Proposition 37. Let D ⊂ R be open and let f : D → R. Then f is continuous on
D if and only if for every open set V ⊂ R, the preimage f−1(V ) is open.

Proof. We prove both directions.
(⇒) Suppose that f is continuous on D. Let V ⊂ R be open. We wish to show

that the preimage
f−1(V ) = {x ∈ D | f(x) ∈ V }

is open. Let a ∈ f−1(V ), so that f(a) ∈ V ; we wish to find δ > 0 such that
(a− δ, a + δ) ⊂ f−1(V ).

Since D is open, there exists δ1 > 0 such that (a − δ1, a + δ1) ⊂ D. Since V is
open, there exists ε > 0 such that (f(a)−ε, f(a)+ε) ⊂ V . Since f is continuous at a,
there exists δ2 > 0 such that |x− a| < δ2 ⇒ |f(x)− f(a)| < ε. Let δ = min{δ1, δ2}.
Then for x ∈ (a − δ, a + δ), we have x ∈ D, and |x − a| < δ, so |f(x) − f(a)| < ε,
so f(x) ∈ V . Thus x ∈ f−1(V ).

(⇐) Suppose that for every open set V ⊂ R, the preimage f−1(V ) is open. Let
a ∈ D; we wish to show that f is continuous at a. Let ε > 0; we wish to find δ > 0
such that |x− a| < δ ⇒ |f(x)− f(a)| < ε.

Let V = (f(a) − ε, f(a) + ε). Now f−1(V ) is open, and a ∈ f−1(V ), so there
exists δ > 0 such that (a−δ, a+δ) ⊂ f−1(V ). Let x ∈ D such that |x−a| < δ. Then
x ∈ (a−δ, a+δ), so x ∈ f−1(V ), so f(x) ∈ V , which says that |f(x)−f(a)| < ε. �

Proposition 38. Let D ⊂ R, f : D → R, g : D → R, and k ∈ R. If f and g
are continuous at a, then kf , f + g and fg are continuous at a. If additionally
g(a) 6= 0, then f

g is continuous at a.

Proof. Assume that f and g are continuous at a; we prove that f + g is continuous
at a, the other proofs being almost identical in concept.

Let (xn) be a sequence from D which converges to a. It suffices to show that
((f + g(xn)) converges to (f + g)(a).

Then (f(xn)) converges to f(a), and (g(xn)) converges to g(a). By the sum of
limits theorem for sequences,

lim((f+g)(xn)) = lim(f(xn)+g(xn)) = lim f(xn)+lim g(xn) = f(a)+g(a) = (f+g)(a).

Thus f + g is continuous at a. �

Remark 4. This proposition, in concert with liberal use of induction, can be used
to show that a polynomial function is continuous on R, and that a rational function
is continuous on its domain.

6.2. Connectedness.

Definition 19. Let A ⊂ R. We say that A is connected if for all x1, x2 ∈ I with
x1 < x2, we have [x1, x2] ⊂ A.

Proposition 39. Let a, b ∈ R with a < b. Then [a, b] = {x ∈ R | a ≤ x ≤ b} is
connected.

Proof. Let x1, x2 ∈ [a, b] with x1 < x2. Then a ≤ x1 < x2 ≤ b.
Let x ∈ [x1, x2]. By transitivity of order, a ≤ x ≤ b. Thus x ∈ [a, b]. This shows

that [x1, x2] ⊂ [a, b]. Thus [a, b] is connected. �

Observation 2. Actually, one can extend this prove into cases to see that a subset
of R is connected if and only if it is an interval.
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Proposition 40. Let f : D → R be continuous, and let I ⊂ D be connected.
Then f(I) is connected.

Proof. Let y1, y2 ∈ f(I) with y1 < y2, and let y ∈ [y1, y2]. We wish to show that
y ∈ f(I).

Let x1 ∈ f−1(y1) and x2 ∈ f−1(y2). We assume that x1 < x2, the other case
being similar. Since I is connected, [x1, x2] ⊂ I.

Let S = {x ∈ [x1, x2] | f(x) ≤ y}. Now f(x1) = y1 ≤ y, so x1 ∈ S, and S is
nonempty. Also x2 is an upper bounded for S.

Let s = supS; then x1 ≤ s ≤ x2, so s ∈ I. For every n ∈ N, there exists sn ∈ S
such that s − 1

n < sn ≤ s. The sequence (sn) clearly converges to s, and since f
is continuous, the sequence (f(sn)) converges to f(s). Since f(sn) ≤ y for all n,
f(s) ≤ y.

If s = x2, then f(s) = y2 ≥ y ≥ f(s), so y = y2 ∈ f(I). Thus assume that
s < x2, and let d = x2−s. Set tn = s+ d

n . Then tn ∈ [x1, x2] but tn > s, so tn /∈ S,
and f(tn) > y. Moreover (tn) clearly converges to s, and since f is continuous,
(f(tn)) converges to f(s). Thus f(s) ≥ y. Ultimately, this shows that y = f(s), so
y ∈ f(I). �

Theorem 3. (Intermediate Value Theorem)
Let f : [a, b] → R be continuous. If f(a)f(b) < 0, then there exists c ∈ (a, b) such
that f(c) = 0.

Proof. Since [a, b] is connected, so is f([a, b])
Since f(a)f(b) < 0, either f(a) < 0 < f(b) or f(b) < 0 < f(a). If f(a) <

0 < f(b), then 0 ∈ [f(a), f(b)] ⊂ f([a, b]), and if f(b) < 0 < f(a), then 0 ∈
[f(a), f(b)] ⊂ f([a, b]). In either case, 0 ∈ f([a, b]), so there exists c ∈ E such that
f(c) = 0. Clearly c 6= a and c 6= b, so c ∈ [a, b] r {a, b} = (a, b). �

6.3. Compactness.

Definition 20. Let A ⊂ R. We say that A is compact if it is closed and bounded.

Proposition 41. Let K ⊂ R be compact. Then inf K, supK ∈ K.

Proof. First note that inf K and sup K exist as real number, since K is bounded.
We have seen that there exist sequences in K which converge to inf K and sup K,
respectively. Since K is closed, the limits of these sequences are in K. �

Proposition 42. Let f : D → R be continuous, and let K ⊂ D be compact.
Then f(K) is bounded.

Proof. Suppose that f(K) is unbounded, and assume that f(K) is unbounded
above; the argument if f(K) is unbounded below is analogous.

For every n ∈ N, there exists yn ∈ f(K) such that yn ≥ n. Clearly (yn) is
unbounded, and every subsequence of (yn) is unbounded.

For every n ∈ N, select xn ∈ f−1(yn). Then (xn) is a sequence in K. Since K
is bounded, (xn) has a convergent subsequence, say (xnk

) converges to x. Since K
is closed, x ∈ K; thus f is defined at x, and f(x) ∈ f(K). Let y = f(x). Since f
is continuous at x, (f(xnk

)) converges to y. Since ynk
= f(xnk

), the subsequence
(ynk

) converges to y. But then (ynk
) is bounded, a contradiction. Therefore, f(K)

must be bounded. �
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Proposition 43. Let f : D → R be continuous, and let K ⊂ D be compact.
Then f(K) is compact.

Proof. We just showed that f(K) is bounded; now we show that f(K) is closed.
Let (yn) be a sequence in f(K) which converges to p; we show that p ∈ K. Select

xn ∈ f−1(yn). Then (xn) is a sequence in K. Since K is bounded, this sequence
is bounded, so it has a convergent subsequence, say (xnk

) converges to q. Since K
is closed, q ∈ K. Now f is continuous as q, so (f(xnk

)) = (ynk
) converges to f(q).

Since (ynk
) is a subsequence of (yn) and (yn) converges to p, the subsequence (ynk

)
must converge to p. This shows that f(q) = p. Since q ∈ K, p = f(q) ∈ f(K). �

Proposition 44. Let f : D → R be continuous, and let K ⊂ D be compact. Then
there exist x1, x2 ∈ K such that f(x1) ≤ f(x) ≤ f(x2) for every x ∈ K.

Proof. Note that f(K) is compact, so it is closed and bounded. Let y1 = inf f(K)
and y2 = sup f(K), which exist as real numbers because f(K) is bounded. Since
f(K) is compact, y1, y2 ∈ f(K). Let x1 ∈ f−1(y1) and x2 ∈ f−1(y2), and conclude
that for x ∈ K, we have f(x) ∈ f(K), so

f(x1) = y1 = inf f(K) ≤ f(x) ≤ sup f(K) = y2 = f(x2).

�

Remark 5. Our last three principal results can be paraphrased as follows:
(a) the continuous image of a connected set is connected;
(b) the continuous image of a compact set is compact;
(c) a continuous function on a compact set attains a minimum and maximum

on that set.

6.4. Continuity Examples.

Example 1. Let f : R → R be given by

f(x) =

{
1 if x is rational
0 if x is irrational

Show that f is discontinuous at every real number.

Proof. Let x0 ∈ R. To show that f is discontinuous at x0, it suffices to find ε > 0
such that for every δ > 0, there exists x ∈ (x0 − δ, x0 + δ) with |f(x)− f(x0)| ≥ ε.

Let ε = 1
2 and let δ > 0. Then there exists both a rational and an irrational in

(x0 − δ, x0 + δ). If x0 is rational, let x1 be an irrational in this interval, and we
have |f(x1)− f(x0)| = 1 > ε; if x0 is irrational, let x2 be a rational in this interval,
and we still have |f(x2)− f(x0)| = 1 > ε. Thus f is not continuous at x0. �
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Example 2. Let f : R → R be given by

f(x) =

{
x if x is rational
0 if x is irrational

Show that f is continuous at x = 0 and discontinuous at all nonzero real numbers.

Proof. Let x0 ∈ R r {0}; we show that f is discontinuous at x0. Let ε = |x0|
2 and

let δ > 0. Then there exists both a rational and an irrational in (x0 − δ, x0 + δ). If
x0 is rational, let x1 be an irrational in this interval, and we have |f(x1)− f(x0)| =
|x0| > ε. If x0 is irrational, let x2 be a rational in this interval such that |x2| > |x0|
and we still have |f(x2)− f(x0)| = |x2| > |x0| > ε. Thus f is not continuous at x0.

Now we consider the behavior of f at zero. Let ε > 0 and let δ = ε. Then if
|x−0| < δ, we have |f(x)− f(0)| = 0 if x is irrational and |f(x)− f(0)| = |x| if x is
rational; in either case, |f(x)− f(0)| ≤ |x| < δ = ε, so f is continuous at zero. �

Example 3. If r ∈ Q, there exists p ∈ Z and q ∈ N such that r = p
q . Define

q : Q → R by

q(r) = min{q ∈ N | r =
p

q
for some p ∈ Z}.

Define f : R → R by

f(x) =

{
0 if x is irrational

1
q(x) if x is rational

Show that f is discontinuous at every rational and continuous at every irrational.

Proof. Suppose that x0 is rational. We wish to show that f is not continuous at x0.
It suffices to find ε > 0 such that for every δ > 0 there exists x1 ∈ (x0 − δ, x0 + δ)
with |x0 − x1| > ε.

Since x0 is rational, we have x0 = p
q(x0)

for some p ∈ Z. Let ε = 1
2q(x0)

and let
δ > 0. Then (x0−δ, x0+δ) contains an irrational number, say x1; then |x0−x1| < δ
but |f(x0)− f(x1)| = 1

q(r) > ε. Thus f cannot be continuous at x0.
Suppose that x0 is irrational. Let ε > 0. It suffices to find δ > 0 such that

|x− x0| < δ ⇒ |f(x)− f(x0)| < ε.
Let N ∈ N be so large that 1

N < ε. Let a be the greatest integer which is less
than x0 and b be the least integer which is greater than x0; then b = a + 1 and
x0 ∈ [a, b].

For q ∈ Q, there exist only finitely many points in the set [a, b]∩ {k
q | k ∈ Z} (in

fact, this set contains no more than q points). Thus the set

D = [a, b] ∩ {k

q
| k ∈ Z, q ≤ N}

is finite (there are no more than N(N+1)
2 points in this set). Let

δ = min{|x0 − d| | d ∈ D};

since this set is a finite set of positive real numbers, the minimum exists as a
positive real number. Then (x0 − δ, x0 + δ) ⊂ [a, b]. Let x ∈ (x0 − δ, x0 + δ).
If x is irrational, we have |f(x) − f(x0)| = 0 < ε, and if x is rational, we have
|f(x)− f(x0)| = 1

q(x) < 1
N < ε. Thus f is continuous at x0. �
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6.5. Problems.

Problem 36. Let f : [0,∞) → R be given by f(x) =
√

x, and let a ∈ R be positive.
Show that f is continuous at a. (hint: use Proposition 36).

Problem 37. Let f : R → R be a continuous function such that f(x) = x2 for
every x ∈ Q. Show that f(x) = x2 for every x ∈ R (hint: use Proposition 36).

Problem 38. Let f : [a, b] → R and g : [a, b] → R be continuous. Suppose that
f(a) = g(b) and f(b) = g(a). Show that there exists c ∈ (a, b) such that f(c) = g(c)
(hint: use Theorem 3).

Problem 39. Let K ⊂ R be a compact connected set. Show that there exist
a, b ∈ R with a ≤ b such that K = [a, b].

Definition 21. Let D ⊂ R and let a ∈ D. Let f : D → R. We say that a is a fixed
point of f if f(a) = a.

Problem 40. Let K be a compact connected subset of R, and let f : K → R be
continuous. Show that f has a fixed point (hint: use Theorem 3).
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